A full-stack cryptocurrency price prediction platform leveraging CNN, LSTM, and hybrid CNN-LSTM models to forecast market trends with real-time data visualization.
A full-stack system for cryptocurrency price prediction with real-time training monitoring and forecasting capabilities.
/server
)/client
)git clone https://github.com/mhanifiisik/crypto-predict.git
cd crypto-predict
# Server setup
cd server
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# Client setup
cd ../client
bun install
docker-compose up --build
.env
)FLASK_ENV=production REDIS_URL=redis://redis:6379/0 MODEL_SAVE_PATH=models/
.env.local
)NEXT_PUBLIC_BASE_URL=http://localhost:5000
├── client/ # Next.js 15 Frontend
│ ├── app/ # App router
│ │ ├── dashboard/ # Main dashboard page
│ │ │ └── page.tsx
│ │ ├── layout.tsx # Root layout
│ │ └── not-found.tsx # 404 page
│ ├── components/ # UI Components
│ │ ├── charts/ # Recharts components
│ │ ├── training/ # Training progress visuals
│ │ ├── widgets/ # Dashboard widgets
│ │ └── ui/ # Shadcn/ui components
│ ├── hooks/ # Custom hooks
│ ├── lib/ # Utility functions
│ │ ├── api.ts # Axios client
│ │ └── websocket.ts # Socket.IO client
│ ├── schemas/ # Form schemas (Zod)
│ ├── types/ # TypeScript definitions
│ ├── styles/ # Tailwind CSS
│ └── public/ # Static assets
│
├── server/ # Flask Backend
│ ├── ml_app/ # Core ML Logic
│ │ ├── config.py # Model configurations
│ │ ├── predictor.py # Training pipeline
│ │ ├── models/ # Model architectures (CNN, LSTM, Hybrid)
│ │ ├── data/ # Data processing
│ │ └── visualization/ # Analytical visuals
│ ├── app.py # Flask entry point
│ ├── docker-compose.yml # Redis configuration
│ ├── Dockerfile
│ └── requirements.txt # Python dependencies
│
└── optuna/ # Hyperparameter optimization
Distributed under the MIT License. See LICENSE
for more information.